Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$\mathrm{K}_{0.53} \mathrm{Mn}_{2.37} \mathrm{Fe}_{\mathbf{1 . 2 4}}\left(\mathrm{PO}_{4}\right)_{3}$

Mourad Hidouri* and Mongi Ben Amara

Faculté des Sciences de Monastir, 5019 Monastir, Tunisia
Correspondence e-mail: mourad_hidouri@yahoo.fr
Received 3 November 2010; accepted 6 December 2010
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{Mn}-\mathrm{O})=0.003 \AA$; disorder in main residue; R factor $=0.037 ; w R$ factor $=0.089$; data-to-parameter ratio $=12.8$.

During an attempt to crystallize potassium manganese diiron phosphate $\mathrm{KMnFe}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ by the flux method, a new phase, potassium dimanganese iron triphosphate, $\mathrm{K}_{0.53} \mathrm{Mn}_{2.37} \mathrm{Fe}_{1.24^{-}}$ $\left(\mathrm{PO}_{4}\right)_{3}$, was isolated. This phase, whose composition was confirmed by ICP analysis, is isotypic with the alluaudite-like phosphates, thus it exhibits the $(A 2)\left(A^{\prime} 2\right)(A 1)\left(A^{\prime} 1\right)\left(A^{\prime \prime} 1\right)$ $(M 1)(M 2)_{2}\left(\mathrm{PO}_{4}\right)_{3}$ general formula. The site occupancies led to the following cation distribution: 0.53 K on $A^{\prime} 2$ (site symmetry $2), 0.31 \mathrm{Mn}$ on $A^{\prime \prime} 1,1.0 \mathrm{Mn}$ on $M 1$ (site symmetry 2) and (0.62 $\mathrm{Fe}+0.38 \mathrm{Mn}$) on $M 2$. The structure is built up from infinite chains of edge-sharing $M 1 \mathrm{O}_{6}$ and $M 2 \mathrm{O}_{6}$ octahedra. These chains run along [101] and are connected by two different PO_{4} tetrahedra, one of which exhibits 2 symmetry. The resulting three-dimensional framework delimits large tunnels parallel to [001], which are partially occupied by the K^{+}and Mn^{2+} cations.

Related literature

For the alluaudite structure, see: Fisher (1955); Moore (1971); Chouaibi et al. (2001); Corbin et al. (1986); Lee \& Ye (1997); Hidouri et al. $(2003,2004,2008)$ Antenucci et al. $(1993,1995)$; For P-O distances, see: Baur (1974). For bond-valence sums, see: Brown \& Altermatt (1985). For ionic radii, see: Shannon (1976).

Experimental

Crystal data

$\mathrm{K}_{0.53} \mathrm{Mn}_{2.37} \mathrm{Fe}_{1.24}\left(\mathrm{PO}_{4}\right)_{3}$	$a=12.272(2) \AA$
$M_{r}=505.28$	$b=12.606(2) \AA$
Monoclinic, $C 2 / c$	$c=6.416(4) \AA$

$\beta=114.87(2)^{\circ}$
$V=900.5(6) \AA^{\circ}$
$Z=4$
$Z=4$
Mo $K \alpha$ radiation

Data collection
Enraf-Nonius TurboCAD-4 diffractometer
Absorption correction: refined from
ΔF (Parkin et al., 1995)
$T_{\min }=0.42, T_{\max }=0.81$
1754 measured reflections

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.089$
$S=1.07$
1308 reflections
$\mu=6.07 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.43 \times 0.09 \times 0.02 \mathrm{~mm}$

1308 independent reflections
1047 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
2 standard reflections every 120 min intensity decay: 1%

> 102 parameters
> 2 restraints
> $\Delta \rho_{\max }=0.78$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.68 \mathrm{e}^{-3}$

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2150).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Antenucci, D., Fransolet, A. M., Miehe, G. \& Tarte, P. (1995). Eur. J. Mineral. 7, 175-181.
Antenucci, D., Miehe, G., Tarte, P., Shmahl, W. W. \& Fransolet, A. M. (1993). Eur. J. Mineral. 5, 207-213.
Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Chouaibi, N., Daidouh, A., Pico, C., Strantrich, A. \& Veiga, M. L. (2001). J. Solid State Chem. 159, 46-50.
Corbin, D. R., Whitney, J. F., Fulz, W. C., Stucky, G. D., Eddy, M. M. \& Cheetham, A. K. (1986). Inorg. Chem. 25, 2279-2280.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Fisher, D. J. (1955). Am. Mineral. 40, 1100-1109.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Hidouri, M., Lajmi, B., Driss, A. \& Ben Amara, M. (2003). Acta Cryst. E59, i7i9.
Hidouri, M., Lajmi, B., Wattiaux, A., Fournes, L., Darriet, J. \& Amara, M. B. (2004). J. Solid State Chem. 177, 55-60.

Hidouri, M., Lajmi, B., Wattiaux, A., Fournes, L., Darriet, J. \& Amara, M. B. (2008). J. Alloys Compd, 450, 301-305.

Lee, K.-H. \& Ye, J. (1997). J. Solid State Chem. 131, 131-137.
Moore, P. B. (1971). Am. Mineral. 56, 1955-1975.
Parkin, S., Moezzi, B. \& Hope, H. (1995). J. Appl. Cryst. 28, 53-56.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

$\mathbf{K}_{\mathbf{0 . 5 3}} \mathbf{M n}_{2.37} \mathrm{Fe}_{\mathbf{1 . 2 4}}\left(\mathrm{PO}_{4}\right)_{3}$

M. Hidouri and M. Ben Amara

Comment

The term alluaudite is referred to both natural and synthetic phosphates of compositions $\left(\mathrm{Na}^{+}\right)\left(\mathrm{Na}^{+}\right.$, $\left.\mathrm{Ca}^{2+}\right)\left(M^{2+}\right)\left(\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}\right)_{2}\left(\mathrm{PO}_{4}\right)_{3}$ where M^{2+} is a divalent cation. The first detailed structural description was reported in 1971 by Moore (Moore, 1971) who proposed the structural formula $(\mathrm{X} 2)(\mathrm{X} 1)(M 1)(M 2)_{2}\left(\mathrm{PO}_{4}\right)_{3}$. X 1 and X 2 are cationic sites available to large monovalent and divalent cations such as Na^{+}and Ca^{2+} while $M 1$ and $M 2$ are octahedral sites containing a distribution of divalent and trivalent cations of moderate size such as $\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}$ or Fe^{3+}. More recently, detailed structural analysis of several alluaudites demonstrated that the X 2 site has two distinct positions labeled $A 2(0,0,0)$ and $A^{\prime} 2(0, \sim 0$, $1 / 4)$ in a tunnel at $(0,0, z)$ and X 1 has three distinct positions, labeled $A 1(1 / 2,0,0), A^{\prime} 1(0, \sim 1 / 2,1 / 4)$ and $A^{\prime \prime} 1(x, y, z)$ in a tunnel at $(1 / 2,0, z)$. The general formula of Moore was then reformulated as $\left[(A 2)\left(A^{\prime} 2\right)\right]\left[(A 1)\left(A^{\prime} 1\right)\left(A^{\prime \prime} 1\right)\right](M 1)(M 2)_{2}\left(\mathrm{PO}_{4}\right)_{3}$. The crystal structure consists of $M 2{ }_{2} \mathrm{O}_{10}$ bioctahedral units of edge-sharing $M 2 \mathrm{O}_{6}$ octahedra, sharing opposite edges with $M 1 \mathrm{O}_{6}$ octahedra that form zigzag chains of a sequence $-M(2)-M(2)-M(1)-$, running along the [10-1] direction. Adjacent chains are linked by the phosphate tetrahedra leading to what have been described as "pleated sheets" perpendicular to the [0 $10]$ direction (Fig. 1(b)). These sheets are connected by the phosphate groups giving rise to a three-dimensional framework with two sets of tunnels parallel to [001] (Fig. 1(b)).

The title phase $\mathrm{K}_{0.53} \mathrm{Mn}_{2.37} \mathrm{Fe}_{1.24}\left(\mathrm{PO}_{4}\right)_{3}$ was isolated during an attempt to synthesize $\mathrm{KMnFe}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ and its structure has shown to be of the alluaudite type. The site occupancy factors indicated to the following cation distribution: 0.53 K on $A^{\prime} 2,0.31 \mathrm{Mn}$ on $A^{\prime \prime} 1,1.0 \mathrm{Mn}$ on $M 1$ and $(0.62 \mathrm{Fe}+0.38 \mathrm{Mn})$ on $M 2$. The partial occupancy of the large A sites has already been observed in several alluaudites being attributed to the great flexibility of these sites which allows them to be filled totally, partially or left vacant without significant influence on the alluaudite framework. Assuming a maximum gap in the cation-oxygen distances, the envronment of the $A^{\prime} 2$ site (figure 2) consists of eight oxygen atoms forming what has been called by Moore as a gable desphenoid (Moore, 1971). That of the $A^{\prime \prime} 1$ site (figure 2) onsists of five O atoms forming a distorted trigonal bipyramid. The fivefold coordination of this site which is, to the best of our knowledge, observed for the first time in an alluaudite-like compound can be attributed to the small size of the Mn^{2+} cation. Both the $M 1$ and $M 2$ sites are octahedrally coordinated (figure 2). From the $M 1-\mathrm{O}$ distances and cis $\mathrm{O}-M 1-\mathrm{O}$ angles, one can deduce that the $M 1 \mathrm{O}_{6}$ octahedron is strongly distorted. However, the mean $M 1-\mathrm{O}>$ mean distance of $2.238 \AA$ is close to that $2.23 \AA$ predicted by Shannon for octahedral Mn^{2+} cations (Shannon, 1976). The $M 2-\mathrm{O}$ distances and cis $\mathrm{O}-M 2-\mathrm{O}$ angles show the $\mathrm{M2O}_{6}$ octahedron to be less distorted than $\mathrm{M1O}_{6}$. The $<M(2)-\mathrm{O}>$ mean distance $(2.068 \AA)$ is between $2.03 \AA$ and 2.23 \AA, calculated by Shannon (Shannon, 1976) for the Fe^{3+} and Mn^{2+} cations, respectively. This result confirms the presence of both atoms on the $M(2)$ site. The PO_{4} tetrahedra have classical $\mathrm{P}-\mathrm{O}$ distances with an overall value of $1.537 \AA$ close to that $1.537 \AA$, assigned by Baur for the monophosphate groups (Baur, 1974). The Bond Valence Sums (BVS) were calculated for all cationic sites by the Brown and Altermatt method (Brown et al., 1985). The analysis of the sums for the $M 2$ site, around Fe^{3+} and Mn^{2+} led to valence sums of 2.87 and 2.64 , respectively which corresponds to occupation numbers of 0.71 and

supplementary materials

0.29 , very close to the x-ray values of 0.62 and 0.38 . The sum around Mn 3 is 1.34 and around K is 0.42 . These are poor because of the partial occupancy but unfortunately these values cannot be used to estimate the occupancy. The sums around P1 and P2 of 4.92 and 4.98 , respectively around the O sites (from 1.91 to 2.12) are consistent with the predicted ones of 5 for P and 2 for O . In summery, the valence calculation results gave a good confirmation of the structure, including the assigned oxidation states which cannot be determined by x-ray analysis.

Experimental

Single crystals of the title phase were extracted from a mixture of nominal composition $\mathrm{KMnFe}_{2}\left(\mathrm{PO}_{4}\right)_{3}$. The latter was prepared by the flux method starting from a mixture of 2.042 g of $\mathrm{KNO}_{3}, 2.589 \mathrm{~g}$ of $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}, 8.245 \mathrm{~g}$ of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} .9 \mathrm{H}_{2} \mathrm{O}, 4.002 \mathrm{~g}$ of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ and 0.719 g of MoO_{3}. These reactants were dissolved in nitric acid and the solution obtained was dried for 24 h at 353 K . The obtained dry residue was ground in an agate mortar to ensure its best homogeneity, then heated in a platinum crucible to 673 K for 24 h in order to remove the decomposition products: NH_{3} and $\mathrm{H}_{2} \mathrm{O}$. The sample was then reground, melted at 1173 K for 1 h and subsequently cooled at a $10^{\circ} . \mathrm{h}^{-1}$ rate to 673 K . The final product was washed with warm water in order to dissolve the flux. From the mixture, dark brown and hexagonally shaped crystals were extracted. Their analysis using ICP confirmed the presence of only $\mathrm{K}, \mathrm{Mn}, \mathrm{Fe}$ and P in atomic ratio of $0.53: 2.37: 1.24: 3$, in accordance with the $\mathrm{K}_{0.53} \mathrm{Mn}_{2.37} \mathrm{Fe}_{1.24}\left(\mathrm{PO}_{4}\right)_{3}$ composition.

Figures

Potassium dimanganese iron triphosphate

Crystal data

$\mathrm{K}_{0.53} \mathrm{Mn}_{2.37} \mathrm{Fe}_{1.24}\left(\mathrm{PO}_{4}\right)_{3}$
$F(000)=957$
$M_{r}=505.28$
Monoclinic, C2/c
$D_{\mathrm{x}}=3.727 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$

Hall symbol: -C 2yc
$a=12.272$ (2) \AA
$b=12.606$ (2) \AA
$c=6.416(4) \AA$
$\beta=114.87$ (2) ${ }^{\circ}$
$V=900.5(6) \AA^{3}$
$Z=4$

Cell parameters from 25 reflections
$\theta=9.8-14.4^{\circ}$
$\mu=6.07 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Hexagonal, brown
$0.43 \times 0.09 \times 0.02 \mathrm{~mm}$

Data collection

Enraf-Nonius TurboCAD-4

 diffractometerRadiation source: fine-focus sealed tube
graphite
non-profiled $\omega / 2 \theta$ scans
Absorption correction: part of the refinement model
(ΔF)
(Parkin et al., 1995)
$T_{\text {min }}=0.42, T_{\text {max }}=0.81$
1754 measured reflections
1308 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.089$
$S=1.07$
1308 reflections
102 parameters
2 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0451 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.78$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.67$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008)
Extinction coefficient: 0.0009 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. ($<1)$
K	0.0000	$-0.0116(2)$	0.2500	$0.0229(7)$	$0.531(5)$
Mn1	0.0000	$0.26376(7)$	0.2500	$0.0156(2)$	
Fe2	$0.22489(4)$	$0.15521(4)$	$0.13977(8)$	$0.01004(16)$	$0.6217(6)$
Mn2	$0.22489(4)$	$0.15521(4)$	$0.13977(8)$	$0.01004(16)$	$0.3783(7)$
Mn3	$-0.02360(17)$	$0.49774(17)$	$0.0393(4)$	$0.0209(5)$	$0.3064(12)$
P1	0.0000	$0.28642(11)$	-0.2500	$0.0096(3)$	
O11	$0.0479(2)$	$0.2160(2)$	$-0.0331(4)$	$0.0138(5)$	
O12	$-0.0942(3)$	$0.3615(2)$	$-0.2314(6)$	$0.0251(7)$	
P2	$0.24436(8)$	$0.10810(7)$	$0.63905(15)$	$0.0093(2)$	
O21	$0.2272(2)$	$0.1782(2)$	$0.8220(4)$	$0.0156(6)$	
O22	$0.1735(3)$	$0.1629(2)$	$0.4048(4)$	$0.0169(6)$	
O23	$0.3783(2)$	$0.1019(2)$	$0.6976(6)$	$0.0255(7)$	
O24	$0.1930(2)$	$-0.0019(2)$	$0.6349(5)$	$0.0178(6)$	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
K	$0.0093(10)$	$0.0218(13)$	$0.0260(13)$	0.000	$-0.0040(9)$	0.000
Mn1	$0.0115(4)$	$0.0202(4)$	$0.0154(4)$	0.000	$0.0058(3)$	0.000
Fe2	$0.0065(2)$	$0.0138(3)$	$0.0065(3)$	$0.00016(18)$	$-0.00043(19)$	$0.0008(2)$
Mn2	$0.0065(2)$	$0.0138(3)$	$0.0065(3)$	$0.00016(18)$	$-0.00043(19)$	$0.0008(2)$
Mn3	$0.0156(12)$	$0.0164(9)$	$0.0165(11)$	$-0.0002(9)$	$-0.0070(7)$	$0.0014(9)$
P1	$0.0060(5)$	$0.0140(6)$	$0.0038(5)$	0.000	$-0.0028(4)$	0.000
O11	$0.0087(11)$	$0.0193(13)$	$0.0066(11)$	$-0.0027(10)$	$-0.0033(9)$	$0.0028(10)$
O12	$0.0149(13)$	$0.0245(15)$	$0.0301(17)$	$0.0025(12)$	$0.0037(13)$	$-0.0119(14)$
P2	$0.0065(4)$	$0.0123(4)$	$0.0050(4)$	$0.0004(3)$	$-0.0016(3)$	$0.0012(3)$
O21	$0.0128(12)$	$0.0235(14)$	$0.0078(11)$	$-0.0030(11)$	$0.0017(10)$	$-0.0038(11)$
O22	$0.0244(14)$	$0.0141(14)$	$0.0048(11)$	$0.0003(11)$	$-0.0010(10)$	$-0.0007(10)$
O23	$0.0114(13)$	$0.0189(15)$	$0.047(2)$	$0.0003(11)$	$0.0132(14)$	$-0.0018(15)$
O24	$0.0127(12)$	$0.0184(14)$	$0.0171(13)$	$-0.0013(11)$	$0.0012(11)$	$0.0030(11)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{K}-\mathrm{O} 24$	$2.608(3)$
$\mathrm{K}-\mathrm{O} 24^{\mathrm{i}}$	$2.608(3)$
$\mathrm{K}-\mathrm{O} 24^{\mathrm{ii}}$	$2.767(3)$
$\mathrm{K}-\mathrm{O} 24^{\mathrm{iii}}$	$2.767(3)$
$\mathrm{K}-\mathrm{O} 11^{\text {iv }}$	$2.869(4)$
$\mathrm{K}-\mathrm{O} 11^{\mathrm{v}}$	$2.869(4)$
$\mathrm{K}-\mathrm{O} 22$	$2.929(3)$
$\mathrm{K}-\mathrm{O} 22^{\mathrm{i}}$	$2.929(3)$
$\mathrm{Mn} 3-\mathrm{O} 23^{\mathrm{vi}}$	$2.253(4)$
$\mathrm{Mn} 3-\mathrm{O} 23^{\text {vii }}$	$2.256(4)$

$\mathrm{Mn} 1-\mathrm{O} 22^{\mathrm{i}}$	$2.315(3)$
$\mathrm{Mn} 1-\mathrm{O} 22$	$2.315(3)$
$\mathrm{Fe} 2-\mathrm{O} 24^{\mathrm{ii}}$	$1.970(3)$
$\mathrm{Fe} 2-\mathrm{O} 12^{\mathrm{x}}$	$2.027(3)$
$\mathrm{Fe} 2-\mathrm{O} 22$	$2.049(3)$
$\mathrm{Fe} 2-\mathrm{O} 21^{\mathrm{xi}}$	$2.071(3)$
$\mathrm{Fe} 2-\mathrm{O} 11$	$2.123(3)$
$\mathrm{Fe} 2-\mathrm{O} 21^{\mathrm{vi}}$	$2.167(3)$
$\mathrm{P} 1-\mathrm{O} 12^{\mathrm{xii}}$	$1.537(3)$
$\mathrm{P} 1-\mathrm{O} 12$	$1.537(3)$

sup-4

Mn3-O12 ${ }^{\text {viii }}$	2.294 (4)
Mn3-O12	2.335 (4)
$\mathrm{Mn} 3-\mathrm{O} 23^{\mathrm{ix}}$	2.400 (4)
$\mathrm{Mn} 1-\mathrm{O} 23{ }^{\text {vi }}$	2.189 (3)
$\mathrm{Mn} 1-\mathrm{O} 23{ }^{\text {vii }}$	2.189 (3)
Mn1-O11	2.215 (3)
Mn1-O11 ${ }^{\text {i }}$	2.215 (3)
$\mathrm{O} 24-\mathrm{K}-\mathrm{O} 24^{\mathrm{i}}$	174.63 (16)
$\mathrm{O} 24-\mathrm{K}-\mathrm{O} 24{ }^{\text {ii }}$	73.24 (8)
$\mathrm{O} 24^{\mathrm{i}}-\mathrm{K}-\mathrm{O} 24^{\mathrm{ii}}$	106.42 (8)
$\mathrm{O} 24-\mathrm{K}-\mathrm{O} 24^{\mathrm{iii}}$	106.42 (8)
$\mathrm{O} 24^{\text {i }}-\mathrm{K}-\mathrm{O} 24^{\text {iii }}$	73.24 (8)
$\mathrm{O} 24^{\mathrm{ii}}-\mathrm{K}-\mathrm{O} 24^{\text {iii }}$	172.95 (16)
O24-K-O11 ${ }^{\text {iv }}$	114.87 (10)
$\mathrm{O} 24{ }^{\mathrm{i}}-\mathrm{K}-\mathrm{O} 11^{\text {iv }}$	70.34 (8)
$\mathrm{O} 24{ }^{\text {ii }}-\mathrm{K}-\mathrm{O} 11^{\text {iv }}$	87.10 (9)
$\mathrm{O} 24^{\mathrm{iii}}-\mathrm{K}-\mathrm{O} 11^{\text {iv }}$	99.26 (10)
$\mathrm{O} 24-\mathrm{K}-\mathrm{O} 11^{\mathrm{v}}$	70.34 (8)
$\mathrm{O} 24^{\mathrm{i}}-\mathrm{K}-\mathrm{O} 11^{\mathrm{v}}$	114.87 (10)
$\mathrm{O} 244^{\mathrm{ii}}-\mathrm{K}-\mathrm{O} 11^{\mathrm{v}}$	99.26 (10)
$\mathrm{O} 24{ }^{\text {iii }}-\mathrm{K}-\mathrm{O} 11^{\mathrm{v}}$	87.10 (9)
$\mathrm{O} 11^{\text {iv }}-\mathrm{K}-\mathrm{O} 11^{\text {v }}$	52.22 (11)
O24-K-O22	53.32 (8)
$\mathrm{O} 24^{\mathrm{i}}-\mathrm{K}-\mathrm{O} 22$	121.80 (11)
$\mathrm{O} 24{ }^{\mathrm{ii}}-\mathrm{K}-\mathrm{O} 22$	57.49 (9)
$\mathrm{O} 24{ }^{\text {iii }}-\mathrm{K}-\mathrm{O} 22$	116.43 (11)
$\mathrm{O} 11^{\text {iv }}-\mathrm{K}-\mathrm{O} 22$	144.11 (8)
$\mathrm{O} 11{ }^{\mathrm{v}}-\mathrm{K}-\mathrm{O} 22$	122.58 (8)
$\mathrm{O} 24-\mathrm{K}-\mathrm{O} 22^{\mathrm{i}}$	121.80 (11)
$\mathrm{O} 24^{\mathrm{i}}-\mathrm{K}-\mathrm{O} 22^{\mathrm{i}}$	53.32 (8)
$\mathrm{O} 24^{\mathrm{ii}}-\mathrm{K}-\mathrm{O} 22^{\mathrm{i}}$	116.43 (11)
$\mathrm{O} 24{ }^{\text {iii }}-\mathrm{K}-\mathrm{O} 22^{\text {i }}$	57.49 (9)
$\mathrm{O} 11^{\text {iv }}-\mathrm{K}-\mathrm{O} 22^{\text {i }}$	122.58 (8)
$\mathrm{O} 11^{\mathrm{v}}-\mathrm{K}-\mathrm{O} 22^{\mathrm{i}}$	144.11 (8)
$\mathrm{O} 22-\mathrm{K}-\mathrm{O} 22^{\text {i }}$	82.66 (13)
$\mathrm{O} 23^{\text {vi }}-\mathrm{Mn} 3-\mathrm{O} 23^{\text {vii }}$	75.91 (14)
$\mathrm{O} 23^{\text {vi }}-\mathrm{Mn} 3-\mathrm{O} 12^{\text {viii }}$	84.68 (13)
$\mathrm{O} 23^{\text {vii }}-\mathrm{Mn} 3-\mathrm{O} 12{ }^{\text {viii }}$	121.62 (16)
$\mathrm{Mn} \mathrm{V}^{\text {viii-Mn3-O12 }}$	76.0 (3)
$\mathrm{O} 23{ }^{\text {vi }}-\mathrm{Mn} 3-\mathrm{O} 12$	94.38 (14)
$\mathrm{O} 23^{\text {vii }}-\mathrm{Mn} 3-\mathrm{O} 12$	79.85 (14)

$\mathrm{P} 1-\mathrm{O} 11^{\mathrm{xii}}$	$1.544(3)$
$\mathrm{P} 1-\mathrm{O} 11$	$1.544(3)$
$\mathrm{P} 2-\mathrm{O} 24$	$1.519(3)$
$\mathrm{P} 2-\mathrm{O} 23$	$1.526(3)$
$\mathrm{P} 2-\mathrm{O} 22$	$1.547(3)$
$\mathrm{P} 2-\mathrm{O} 21$	$1.553(3)$

86.39 (11)
118.95 (12)
118.95 (12)
86.39 (11)
148.43 (15)
159.42 (10)
85.06 (10)
90.70 (10)
71.87 (10)
85.06 (10)
159.42 (10)
71.87 (10)
90.70 (10)
113.36 (14)
94.65 (12)
86.05 (12)
109.44 (13)
101.92 (12)
87.13 (12)
161.16 (11)
101.11 (11)
162.62 (11)
79.18 (11)
$\begin{array}{ll}\mathrm{O} 21^{\mathrm{xi}}-\mathrm{Fe} 2-\mathrm{O} 11 & 82.52(11) \\ \mathrm{O} 24^{\mathrm{ii}}-\mathrm{Fe} 2-\mathrm{O} 21^{\mathrm{vi}} & 174.59(11)\end{array}$
$\mathrm{O} 12^{\mathrm{x}}-\mathrm{Fe} 2-\mathrm{O} 21^{\mathrm{vi}} \quad 81.71$ (11)
$\mathrm{O} 22-\mathrm{Fe} 2-\mathrm{O} 21^{\mathrm{vi}} \quad 91.37$ (11)
$\mathrm{O} 21^{\mathrm{xi}}-\mathrm{Fe} 2-\mathrm{O} 21^{\mathrm{vi}} \quad 81.97$ (11)
$\mathrm{O} 11-\mathrm{Fe} 2-\mathrm{O} 21^{\text {vi }} 83.04$ (10)
$\mathrm{O} 12{ }^{\mathrm{xii}}-\mathrm{P} 1 — \mathrm{O} 12 \quad 104.0$ (3)
$\mathrm{O} 12^{\mathrm{xii}} — \mathrm{P} 1 — \mathrm{O} 11^{\mathrm{xii}} \quad 107.33$ (17)
O12—P1—O11 ${ }^{\text {xii }} 114.23$ (15)
$\mathrm{O} 12^{\mathrm{xii}}-\mathrm{P} 1 — \mathrm{O} 11 \quad 114.23$ (15)
O12—P1—O11 107.33 (17)

supplementary materials

$\mathrm{O} 12{ }^{\text {viii }}-\mathrm{Mn} 3-\mathrm{O} 12$	157.20 (11)	$\mathrm{O} 11^{\mathrm{xii}}-\mathrm{P} 1-\mathrm{O} 11$	109.7 (2)
$\mathrm{Mn} 1{ }^{\text {viii }}$-Mn3-O23 ${ }^{\text {ix }}$	69.7 (3)	$\mathrm{O} 24-\mathrm{P} 2-\mathrm{O} 23$	110.71 (16)
$\mathrm{O} 23^{\text {vi }}-\mathrm{Mn} 3-\mathrm{O} 23^{\text {ix }}$	157.58 (11)	$\mathrm{O} 24-\mathrm{P} 2-\mathrm{O} 22$	109.32 (15)
$\mathrm{O} 23{ }^{\text {vii }}-\mathrm{Mn} 3-\mathrm{O} 23^{\text {ix }}$	123.93 (15)	$\mathrm{O} 23-\mathrm{P} 2-\mathrm{O} 22$	111.67 (18)
$\mathrm{O} 12{ }^{\text {viii }}-\mathrm{Mn} 3-\mathrm{O} 23^{\text {ix }}$	91.62 (14)	$\mathrm{O} 24-\mathrm{P} 2-\mathrm{O} 21$	110.22 (17)
$\mathrm{O} 12-\mathrm{Mn} 3-\mathrm{O} 23^{\text {ix }}$	80.58 (13)	$\mathrm{O} 23-\mathrm{P} 2-\mathrm{O} 21$	108.50 (16)
$\mathrm{O} 23{ }^{\text {vi}}-\mathrm{Mn} 1-\mathrm{O} 23^{\mathrm{vii}}$	78.61 (15)	$\mathrm{O} 22-\mathrm{P} 2-\mathrm{O} 21$	106.32 (16)

Fig. 1

supplementary materials

Fig. 2

A1"

M1

P1

$A^{\prime} 2$

P2

